The State of Manganese Promoter in Rhodium-Silica Gel Catalysts

T. P. WILSON,¹ P. H. KASAI,² AND P. C. ELLGEN³

Research and Development Department, Union Carbide Corporation, Union Carbide Technical Centers at South Charleston, West Virginia 25303, and Tarrytown, New York 10591

Received September 5, 1980; revised January 20, 1981

The ESR spectra of Mn/SiO_2 and $Rh-Mn/SiO_2$ compositions were investigated to learn more about the mode of action of the Mn used as a promoter for acetic acid and acetaldehyde formation from synthesis gas over Rh/SiO_2 catalysts. The Mn/SiO_2 catalyst showed a moderately strong, unresolved Mn^{2+} signal while $Rh-Mn/SiO_2$ catalysts showed little signal of any kind when they were reduced in H_2 at 500°C and evacuated. Adding H_2O vapor at room temperature resulted in the appearance of a moderately intense, resolved sextet Mn^{2+} signal from both catalysts. Subsequent treatment of the $Rh-Mn/SiO_2$ with a $CO + H_2O$ mixture led to a threefold increase in intensity of the resolved Mn^{2+} . The same gas mixture had no effect on the signal from the Mn/SiO_2 catalyst. It is suggested that these observations are consequences of the Mn being concentrated on the surface of the Rh crystallites in the Rh-Mn/SiO₂ catalysts, probably as a mixed surface oxide with the Rh which stabilizes Rh⁺ on the metal surface. The change in Rh surface chemistry resulting from this strong interaction with Mn^{2+} could be responsible for the effectiveness of Mn as a promoter in these catalysts.

INTRODUCTION

The selective conversion of synthesis gas to two-carbon chemicals by rhodium-containing silica gel-supported catalysts, operated above atmospheric pressure, has been described in previous publications from this laboratory (1-5). Additions of other metal cations to the basic Rh/SiO₂ catalyst recipe have striking effects on activity and selectivity. Catalysts containing only Rh produce CH₃CHO and CH₃COOH as the principal nonhydrocarbon products. Addition of Fe equivalent to 35 atom% of the Rh present does not change the rate of synthesis gas conversion greatly, but CH₃CHO and CH₃COOH disappear from the products and are replaced by C_2H_5OH . Significant yields of CH₃OH are also obtained. Addition of Mn equivalent to as little as 10 atom% of the Rh has little effect on the selectivity but increases the rate of synthesis gas conversion nearly tenfold. The use of Fe and Mn together gives a catalyst which produces the lower alcohols at a high rate.

The effects of the added metal ions are unexpectedly large and specific. To understand how such effects are produced it would be helpful to know how the additives interact with the Rh, which is known to be present as ~ 40 -µm crystallites of metal in all the catalysts. Systems closely related to the $Rh-Fe/SiO_2$ system have been studied to determine the state of Fe in them. Sancier and Inami (6) used ESR and Garten and Ollis (7) used Mössbauer spectroscopy to study the $Pd-Fe/Al_2O_3$ system. Vannice et al. (8) used Mössbauer to study the $Ru-Fe/SiO_2$ system. Some zero-valent iron was found in those cases. Thus it is possible that some zerovalent iron was present in the Rh-Fe system. Manganese is much more electropositive than Fe, and therefore less likely to be reduced. The standard electrode potential for the reaction, $M \rightarrow M^{2+} + 2e$,

¹ To whom correspondence should be addressed at: Union Carbide Technical Center, P. O. Box 8361, South Charleston, W.V. 25303.

² Present address: IBM, P. O. Box 332, Orchard Park, Danbury, Conn. 06810.

³ Present address: Texas Eastern Corporation, P. O. Box 2521, Houston, Tex. 77001.

is 0.44 V for M = Fe and 1.18 V for M = Mn. Perhaps more to the point, at 400°C the maximum $P_{\rm H_2 0}/P_{\rm H_2}$ ratio at which Fe can be reduced to the metal is 10^{-1} (9). The ratio required for Mn is 10^{-10} , which is some five orders of magnitude lower than the specified moisture content of the commercial cylinder H₂ used for reduction. Since Mn is unlikely to be reduced, even in the presence of Rh, its state in the Rh-Mn catalysts cannot be inferred from the Pd-Fe and Ru-Fe results. Since Mn²⁺ is paramagnetic, ESR provides a sensitive tool for studycharacteristics of the ing the Rh– Mn/SiO_2 system. The results of such a study are reported here.

MATERIALS AND METHODS

All ESR measurements were done at liquid N_2 temperature, 77°K, using a Varian E-104A X-band spectrometer. The microwave frequency locked to the loaded sample cavity was 9.128 GHz.

Three samples were examined by ESR. All were prepared using oxalic acid-washed Davison D59 silica gel as a support (4). Added metal contents were 0.2% Mn, 2.5% Rh-0.2% Mn, and 2.5% Rh-0.1% Mn (all percentages by weight). In each case the support was impregnated with the required quantities of RhCl₃ $\cdot x$ H₂O and Mn(NO₃)₂ in aqueous solution, using conventional incipient wetness techniques. Impregnated samples were first dried slowly in air at temperatures increasing to 200°C, then reduced in flowing H₂ at $\sim 10^2$ hr⁻¹ space velocity, using a 5-hr programmed increase in temperature followed by 1 hr at 500°C. All samples were transferred and stored in air after reduction.

Rh dispersions were measured on freshly prepared Rh-containing catalysts by CO chemisorption and found to be approximately 30%. This is consistent with electron microscope measurements of average Rh crystallite sizes in these catalysts, which averaged 35 to 50 Å. In the 2.5% Rh-0.1% Mn catalyst, then, the Mn added is equal to 25 atom% of the Rh surface atoms. This is approximately the amount of Mn required to produce the maximum effect on catalyst activity (5). Further additions of Mn have relatively little effect.

RESULTS

0.2% Mn/SiO2

The 0.2% Mn/SiO₂ sample was colorless when prepared. After standing in air for several months, it became purple but lost that color after the following sequence of reducing treatments:

- (i) evacuation at 500°C, 30 min;
- (ii) heating in H₂ (600 Torr, 1 Torr = 1333 N m⁻²) at 500°C, 16 hr;
- (iii) evacuation at 500°C, 45 min.

The color change suggests a reduction in the Mn valence from +4 to +2. ESR spectra observed at 77°K after these treatments are shown in Figs. 1 and 2. After room temperature evacuation, an unresolved Mn^{2+} signal was obtained as shown in Fig. 1A. On exposure to 20 Torr of H₂O vapor at room temperature for a few minutes, then cooling again to 77°K, the signal changed to the sextet pattern at g = 2.00, typical of magnetically isolated Mn^{2+} ions in a symmetrical (e.g., octahedral) environment.

Exposure of the H₂O-containing sample to CO at room temperature caused no further change in the signal. Exposure to NO₂ under the same conditions, however, caused an increase in Mn^{2+} signal intensity, as shown in Figs. 2A and B. The strong, sharp triplet at the center of Fig. 2B is due to adsorbed NO₂. Treatment of the original dry sample with NO₂ resulted in an increase in the signal intensity, but the signal was not resolved into a sextet pattern until H₂O was added.

2.5% Rh-0.2% Mn/SiO₂

This sample was stored in air for some months prior to the ESR study. ESR spectra were obtained before any treatment of the specimen (Fig. 3A); after it was evacu-

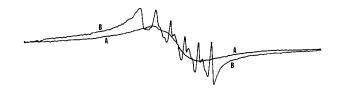


FIG. 1. Catalyst, 0.2% Mn/SiO₂: (A) reduced, evacuated; (B) after H₂O treatment.

ated at room temperature for 30 min (Fig. 3B); after it was exposed to O_2 at temperatures up to 400°C, followed by room temperature evacuation; and after it was exposed for a few minutes to 20 Torr of H₂O vapor at room temperature (Fig. 3C). The resolved sextet patterns (Figs. 3A and C) observed at g = 2.00 are again clearly due to magnetically dilute Mn²⁺. Traces of structure in the sextet pattern could indicate either slight differences in the bonding of Mn²⁺ at different sites or a lack of perfect symmetry at a set of identical sites.

100 G

After the specimen was degassed at room temperature and recooled to 77° K, the original sextet pattern (Fig. 3A) virtually disappeared, leaving a small, unresolved signal (Fig. 3B). The residual signal presumably was due to some Mn^{2+} ions in a symmetrical environment such that they could interact with other paramagnetic species, possibly nearby Mn^{2+} . (Note that this catalyst could be considered to have some excess Mn present over and above that needed for maximum catalytic effect.) This faint pattern was unchanged after exposure of the specimen to O_2 . However, after the specimen was exposed to H_2O vapor at room temperature, its spectrum was more intense and better resolved than the original spectrum. The integrated intensity of the H_2O treated sample (Fig. 3C) corresponded to about one-third of the Mn present in the catalyst.

Other species capable of complexing with exposed Mn^{2+} were investigated. NH_3 (600 Torr) was shown to give results very similar to, but distinguishable from, those obtained with H_2O , as shown in Fig. 4. The isotropic coupling constants for ⁵⁵Mn can be determined from the spectra shown in Fig. 4 to be

$$A_{iso} (Mn)_{H_2O} = 96 \pm 1 \text{ G},$$

 $A_{iso} (Mn)_{NH_2} = 91 \pm 1 \text{ G}.$

Treatment of a water-free sample at room temperature with 600 Torr of CO resulted in the slow development of a signal exhibiting

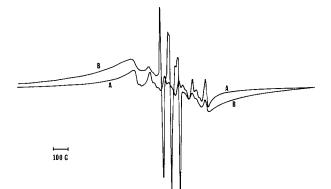


FIG. 2. Reduced, evacuated 0.2% Mn/SiO₂: (A) after H_2O treatment; (B) after $H_2O + NO_2$ treatment.

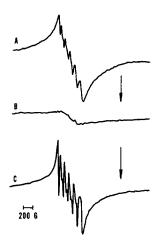


FIG. 3. (A) As received 2.5% Rh–0.2% Mn catalyst; (B) after RT evacuation; (C) after adding H_2O .

no fine structure. The spectrum obtained after 40 hr is shown in Fig. 5B. Again, the lack of fine structure implies that the surface Mn^{2+} complex formed as a result of the CO treatment is symmetrical but that a $Mn^{2+}-Mn^{2+}$ interaction exists.

A change in the spectrum occurred when samples which had been treated with H_2O were exposed to 600 Torr of CO at room temperature for a few minutes without removing the H_2O , as shown in Fig. 6B. This treatment caused the Mn^{2+} signal to triple in intensity, to a point where it represented virtually all of the Mn present. The sextet pattern was well resolved, but close examination suggested the resolution was poorer than had been observed with the sample treated with H_2O or NH_3 only, and the tapering shoulders extended much farther out.

One distinction to be emphasized between the Rh-Mn/SiO₂ and the Mn/SiO₂ results is the increase in Mn^{2+} signal as a

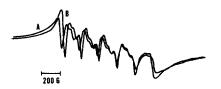


FIG. 4. Catalyst, 2.5% Rh–0.2% Mn: (A) H_2O added; (B) NH₃ added.

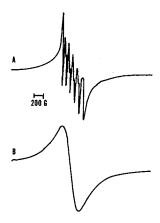


FIG. 5. Catalyst, 2.5% Rh-0.2% Mn: (A) NH₃ added; (B) H_2O + CO added (40 hr).

result of treatment with CO/H_2O when Rh was present, but the lack of any increase when Rh was absent.

2.5% Rh-0.1% Mn/SiO₂

In order to eliminate the possibility that some Mn existed in valence states higher than 2+ in the 2.5% Rh-0.2% Mn/SiO₂ sample studied first, and thus that some of the Mn²⁺ observed following the CO treatment might be due to reduction of those species, a fresh sample of 2.5% Rh-0.1% Mn/SiO₂ was subjected to the same reducing treatment as that given the Mn/SiO₂ sample.

Even more than was true of the original Rh-Mn sample, very little signal was observed after evacuation of the sample at room temperature (Fig. 7A). As shown in Fig. 7B, treatment with H₂O caused the characteristic Mn²⁺ sextet pattern to appear. Treatment of the H₂O-saturated sample either with CO (Fig. 6C) or with NO₂ again caused the intensity of the signal to more than double. Room temperature treatment with O₂ (200 Torr, 16 hr) caused the signal intensity to fade. The fading could be due either to loss of H₂O, thus recreating an unsymmetrical environment around the Mn^{2+} ions, or to chemisorption of O_2 , whose paramagnetism would also cause broadening of the Mn²⁺ signal. The sample could be rehydrated to reproduce the origi-

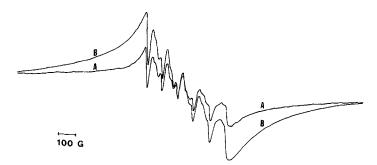


FIG. 6. Catalyst, 2.5% Rh-0.2% Mn: (A) H₂O added; (B) H₂O + CO added.

nal spectrum exactly. Subsequent treatment of the rehydrated, oxidized sample with CO gave a spectrum corresponding to that obtained on CO treatment of the original hydrated sample. Treatments with CO_2 alone or in combination with H_2O did not reproduce the effect of the CO/H₂O treatment.

DISCUSSION

The discussion will be divided into two sections, one having to do with the state of the Mn present in the Mn-only and the Rh-Mn catalysts, and the other having to do with the relation between the state of the Mn and its observed effect on CO hydrogenation.

As noted in the Introduction, the most nearly comparable studies of bimetallic supported catalysts are those of Garten, Vannice, and co-workers (7, 8). They found that Fe³⁺ supported on SiO₂ (Cabosil) or η -Al₂O₃ was reduced only to Fe²⁺ in an hour with flowing H₂ at 450°C, in the absence of Pd or Ru. In the presence of those platinum group metals, Fe was reduced to metal which migrated from the surface of the support and alloyed with the more reducible metals present as crystallites on the support.

In view of the much greater resistance of Mn^{2+} than of Fe²⁺ to reduction to the metal, it seems impossible to sustain the hypothesis that Mn²⁺ was reduced to metal in the absence of Rh, even though the reducing conditions employed here were slightly more forcing than those used in the earlier studies. It might be suggested that some Mn⁺ may have formed which would not be detectable by ESR, but even that seems unlikely in view of the nonexistence of Mn⁺ compounds in the conventional wet chemistry of the element. Thus, the increase in Mn²⁺ signal as a result of treatment of the Mn/SiO_2 catalyst with NO_2 is probably to be explained as due to a change in the coordination of some Mn²⁺ ions from a highly unsymmetrical to a moderately symmetrical form. Having 6s 5/2 configuration, Mn²⁺ ions are subject to crystal field splitting and their ESR signal could be broadened beyond recognition by a strong asymmetric field.

The effect of H_2O appears to be to uncouple Mn^{2+} ions from nearby paramagnetic ions, probably other Mn^{2+} ions. There is no significant change in integrated signal intensity when H_2O is added to the Mn/SiO_2 catalyst, but the unresolved signal is clearly resolved into the typical sextet pattern by

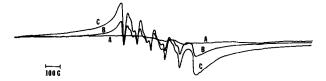


FIG. 7. Catalyst, 2.5% Rh-0.1% Mn/SiO₂: (A) evacuated; (B) H₂O added; (C) H₂O + CO added.

this treatment. Such an effect could be produced, for example, by hydrolyzing O^{2-} linkages between Mn^{2+} ions to pairs of OH^{-} ions. The possibility of coupling dipoles through the electrons of intervening oxide atoms is well recognized (10).

In the Rh-containing catalysts, particularly the one with minimal excess Mn so far as its catalytic effect is concerned, virtually all the Mn would appear to be present in asymmetric sites unless a portion of it is reduced below Mn²⁺. Approximately onethird of the Mn present seems to be in sites such that H₂O alone generates symmetrically coordinated, magnetically isolated Mn²⁺ ions. Whether this occurs by hydrolysis of oxide linkages, simple incorporation of H₂O in the Mn²⁺ coordination sphere, or both, cannot be determined, but it is clearly a facile process. The remaining two-thirds of the Mn present can only be converted to symmetrically coordinated Mn²⁺ ions by the use of CO or NO₂, and in both those cases the Mn²⁺ generated is not magnetically isolated. Neither CO₂ nor O₂ produces the signal enhancement observed with CO and NO₂, a result more easily understood if the phenomenon is due to a change in coordination rather than a change in valence. Only by adding H₂O is the magnetically isolated form produced.

These results are evidence for strong interaction between the added Mn and the Rh crystallites, although reduction of Mn to the metallic state is highly unlikely. Formation of a stable Mn-O-Rh surface compound during the initial catalyst reduction would account for the observations. This is consistent also with the observation that only relatively small additions of Mn to the catalysts are needed to produce the maximum effect on synthesis gas conversion. The implied preferential association of Mn with the Rh in Rh-Mn/SiO₂ catalysts, despite the presence of a SiO₂ surface greater than that of Rh by a factor of $\sim 10^3$, requires a significant thermodynamic driving force. It can be calculated that the heat of interaction of Mn must be greater by 4-5 kcal/mole Mn with Rh than it is with SiO_2 , if the observed distribution is an equilibrium one determined solely by relative heats of interaction. Such a difference in favor of association with Rh metal is somewhat unexpected for Mn²⁺, since stable manganous silicates exist.

Once the idea that Mn is distributed as Mn^{2+} over the surface of the Rh crystallites in Rh/SiO₂ catalysts is accepted, a question arises as to why Mn in that state exhibits the effects it does. A comparison between the performances of a 2.5% Rh/SiO₂ catalyst and a 2.5% Rh-0.2% Mn/SiO₂ catalyst in the conversion of synthesis gas is shown in Table 1. It will be seen that the addition of 0.2% Mn resulted in increases in the overall rate of CO conversion, N, and in the selectivities to C₂ chemicals.⁴ S₁, and to C₂+ hydrocarbons, S₂. The symbols are defined as follows:

- N = moles of product/sec/Rh atom on the surface. This rate is measured at 300°C and 100 atm total pressure, using 1 H₂:1 CO synthesis gas at a space velocity such that the conversion is $\leq 10\%$.
- S_1 = moles of C_2 chemicals/mole CH₄.
- $S_2 = \text{moles}$ of C_{2^+} hydrocarbons/mole CH_4 .

If the role of Mn²⁺ is simply to form a stable mixed surface oxide phase on the Rh surface, Mg²⁺ and Zn²⁺ might be expected to have comparable effects. The three cations are of roughly comparable ionic radius $(Mg^{2+} = 0.66 \text{ Å}, Zn^{2+} = 0.74 \text{ Å}, Mn^{2+} =$ 0.80 Å), and all three form stable spineltype rhodates of composition MRh₂O₄. Ichikawa found (11) that catalysts made by impregnating MgO and ZnO supports with Rh carbonyl clusters gave him CH₃OH in high efficiency from synthesis gas, rather than the CH₄ he obtained from the same clusters on SiO₂ supports. The production of CH₃OH by Rh-based catalysts has also been observed by Bartley (12) in this labo-

⁴ Acetic acid, acetaldehyde, and ethanol.

Effects of Manganese Additions on Catalyst Activity and Product Selectivities ^a			
	2.5% Rh	2.5% Rh-0.2% Mn	0.2% Mn no Mn
Turnover No., $N(\approx k_1 \theta_{\rm H})$	0.03	0.30	10
Selectivity to C_2 chemicals, S_1	0.43	0.83	
Selectivity to higher hydrocarbons, S_2	0.03	0.18	

TABLE	1
-------	---

0.013

0.0009

^{*a*} N, S_1 , and S_2 are defined in the text.

 $NS_1 (\simeq k_{\rm CO} \frac{k_1}{k_4} \theta_{\rm CO})$

 $NS_2(\simeq k_p \frac{k_1}{k_4} \theta_{CH_2})$

ratory. His catalysts were prepared using RhCl₃ as the Rh source and either using MgO as a support or adding 2% Mg(NO₃)₂ to the RhCl₃ solution during the preparation of 2.5% Rh/SiO₂ catalyst. Bartley's results demonstrate that the Rh clusters used by Ichikawa confer no special chemical properties on the resulting catalysts, though Ichikawa did obtain catalysts of very high activity.

In contrast to the results just described, when 2% Mg(NO₃)₂ was added to a 2.5% Rh/SiO₂ catalyst after the latter had been reduced, rather than adding it with the RhCl₃, there was little change in product distribution from the Rh-only case but the rate of CO conversion increased by a factor of about 3 (12). In other words the effect was quite similar to that obtained by adding a limited amount of Mn²⁺.

These results seem most readily understandable in the light of Rabo and coworkers' observation (13) that Rh is borderline among the Group VIII metals in its ability to dissociate CO. The addition of Mg^{2+} to the catalysts would seem to modify the Rh surface chemistry in such a way as to inhibit the dissociation of CO. Without CO dissociation, surface carbon formation would be minimized and little or no CH₄ formation should occur. Instead, the CO could hydrogenate without rupture of the C–O bond.

Mg could suppress CO dissociation on

Rh by forming a surface mixed oxide, presumably with Rh as Rh⁺, just as Mn²⁺ has been postulated to do from the results of the ESR investigation reported here. To suppress C formation as completely as Mg and Zn appear to in Ichikawa's experiments, a high coverage of the Rh surface should be required. The effect of Mn on selectivity, i.e., the continuing formation of CH4 and of C2 chemicals formed from surface CH₂ and CH₃ groups, suggests that there is a lower degree of Rh surface coverage by Mn than by Mg in the catalysts prepared on MgO supports or by coimpregnation. The differences in size of the cations could be responsible for their different effects as additives. If Mg²⁺ and Zn²⁺ can fit into a two-dimensional crystalline surface oxide phase, but Mn²⁺ cannot, the differences in behavior of the ions could be accounted for.

0.25

0.054

A decrease in the rate of CO dissociation as a result of the addition of Mn to the Rh catalyst could lead to a steady-state degree of Rh surface coverage by C lower than the coverage on the Rh-only catalyst.

It seems highly likely that Rh surface atoms associated with C (or O) would not chemisorb H or CO as strongly as would bare Rh metal. Recent observations by Benziger and Madix (14), for example, provide direct evidence for the existence of such a phenomenon in the case of an Fe crystal. Thus decreasing θ_c should in-

20

60

crease the surface available for the formation of CH_3 and for its conversion to stable products.

It has been argued elsewhere (5) that during steady-state operation of Rh catalysts the fractional coverage of the surface by C, θ_C , is close to unity. The turnover number is presumed to be proportional to the product $\theta_H \theta_C$ (15). If C excludes H from the catalyst surface, $\theta_H \propto (1 - \theta_C)$. Thus reducing θ_C will increase the overall rate so long as $\theta_C > 0.5$. For example, if θ_C drops from 0.999 to 0.99, or from 0.99 to 0.90, the tenfold increase in $(1 - \theta_C)$ could easily more than compensate for the slight decrease in θ_C .

An increase in the surface concentration of active sites on adding Mn to Rh/SiO_2 catalysts is not inconsistent with the observed effects of Mn on the overall conversion rate and on the selectivities. The power law rate expressions describing the overall kinetics of CO hydrogenation were found to be of the same form for Rh/SiO₂ and $Rh-Mn/SiO_2$ catalysts (5). This suggests that the Mn does not greatly change either the reaction mechanism or the equilibrium constants for chemisorption of reactants or products. If the changes in the elementary rate constants and the equilibrium constants are not large, changes in catalyst performance should be related to changes in the populations of various surface species.

The turnover numbers and the selectivities, defined above, can be related to surface species concentrations by assuming a specific reaction mechanism. According to the mechanism proposed previously (5), the rate-determining step at high pressure is

$$C + H \xrightarrow{\kappa_1} CH$$
,

whence the turnover number is (14)

$$N = k_1 \theta_{\rm H} \theta_{\rm C} \simeq k_1 \theta_{\rm H}$$

The competitive reactions which determine selectivity to C_2 chemicals, S_1 , are

$$CH_3 + H \xrightarrow{\kappa} CH_4$$

and

$$CH_3 + CO \xrightarrow{\kappa_{C0}} CH_3CO,$$

whence

$$\mathbf{S}_{1} = \frac{k_{\mathrm{CO}}\boldsymbol{\theta}_{\mathrm{CO}}}{k_{4}\boldsymbol{\Theta}_{\mathrm{H}}} \cdot$$

The selectivity to C_{2^+} hydrocarbons, S_2 , is determined by

$$CH_3 + H \xrightarrow{k} CH_4$$

and

$$\mathrm{CH}_3 + \mathrm{CH}_2 \xrightarrow{\kappa_{\mathfrak{b}}} \mathrm{C}_2\mathrm{H}_5,$$

whence

$$S_2 = \frac{k_{\rm p}\theta_{\rm CH_2}}{k_4\theta_{\rm H}} \cdot$$

If the rate constants are unchanged by the addition of Mn, the change in N requires a 10-fold increase in $\theta_{\rm H}$, the change in the product NS_1 requires a 20-fold increase in $\theta_{\rm CO}$, and the change in NS_2 requires a 60-fold increase in $\theta_{\rm CH_2}$. Even though there may in fact be some changes in the rate constants involved, the magnitude of these changes is great enough to suggest that an increase in the effective surface of the catalyst did occur.

The postulated decrease in $\theta_{\rm C}$ on the catalyst surface as a result of Mn additions might be due to chemical effects (valence change, ligand properties) or to geometrical effects. There is evidence from earlier work on methanation over Ni (15) and Ru (16), and also from studies on Rh in this laboratory, that additions of Cu to Group VIII metal-based CO hydrogenation catalysts lower the activity of these metals in that reaction. The effect of added Cu has been ascribed to a requirement that groups of four to six adjacent metal atoms must exist on the catalyst surface before CO decomposition can occur. Copper is inactive in the CO decomposition reaction, so Cu additions reduce sharply the number of multiple Group VIII metal atom sites available. This is strictly a geometric effect and the failure to observe any increase in CO hydrogenation rate at small Cu additions indicates that other factors must be responsible for the promoter action of Mn^{2+} .

The possibility that Mn²⁺ has specific chemical properties which make it unique as a promoter in CO hydrogenation cannot be completely dismissed. $Mn(OH)_2$ on silica gel is an extremely active catalyst for the decomposition of a methanol-water mixture to produce H_2 and CO_2 (17). The observed increase in catalyst activity as a result of Mg²⁺ addition argues, however, for the view that most of the increased activity is due simply to the stabilization of an oxidized form of Rh on the metal surface by mixed oxide formation. That conclusion is also consistent with the recent report by Castner *et al.* (18) that preoxidation of Rh single crystals results in greatly increased catalyst activity and the formation of oxygen containing products.

ACKNOWLEDGMENTS

We thank Dr. W. J. Bartley for communicating the results of his study of the effects of adding Mg^{2+} to Rh/SiO_2 catalysts, and for helpful discussions of the results presented here. Mr. D. MacLeod provided expert technical assistance in the ESR studies. We also thank the management of Union Carbide Corporation for permission to publish this material.

REFERENCES

- Bhasin, M. M., and O'Connor, G. L., Belgian Patent 824,822 (1975).
- 2. Bhasin, M. M., Belgian Patent 824,823 (1975).
- 3. Ellgen, P. C., and Bhasin, M. M., U.S. Patent 4,014,913 (1977).
- Bhasin, M. M., Bartley, W. J., Ellgen, P. C., and Wilson, T. P., J. Catal. 54, 120-128 (1978).
- Ellgen, P. C., Bartley, W. J., Bhasin, M. M., and Wilson, T. P., Advan. Chem. 178, 147–157 (1979).
- Sancier, K. M., and Inami, S. H., J. Catal. 11, 135–143 (1968).
- Garten, R. L., and Ollis, D. F., J. Catal. 35, 232– 246 (1974).
- Vannice, M. A., Lam. Y. L., and Garten, R. L., Advan Chem. 178, 25-34 (1979).
- Anderson, J. R., "Structure of Metallic Catalysts," p. 167 Academic Press, New York, 1975.
- Cotton, F. A., and Wilkinson, G., "Advanced Inorganic Chemistry," 2nd ed., p. 643. Interscience, New York, NY 1966.
- Ichikawa, M., Bull. Chem. Soc. Japan 51, 2268– 2272 (1978).
- 12. Bartley, W. J., private communication.
- 13. Rabo, J. A., Risch, A. P., and Poutsma, M. L., J. Catal. 53, 295-311 (1978).
- 14. Benziger, J., and Madix, R. J., Surface Sci. 94, 119-153 (1980).
- 15. Araki, M., and Ponec, V., J. Catal. 44, 439–448 (1976).
- Bond, G. C., and Turnham, B. D., J. Catal. 45, 128–136 (1976).
- Thomas, C. L., "Catalytic Processes and Proven Catalysts," p. 51. Academic Press, New York, 1970.
- Castner, D. G., Blackadar, R. L., and Somorjai, G. A., J. Catal. 66, 257-266 (1980).